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Definition 

Position vector of the vehicle 

Magnitude of the position vector of the vehicle 

Unit ve i tor  in the direc-tion of the vehicle's position vector,  i. e. 
R = R . R .  

Velocity vector of the vehicle, or  the time rate of change of B . 
Acceleration vector of the vehicle; the time rate of change of v . 
Magnitude of the velocity vector 

Control variable vector defining the thrust  direction 

Time rate of change ofX , the control variable vector 

- 

Magnitude of %, i. e. A 

Time rate of change of 1x1 
Unit vector defining the direction of the thrust  

A 
Time rate of change of h 

The control variable differential equations; time rate  of change of 7 

Position, velocity, and acceleration components along 
any space-fixed coordinate axes ,  x ,  y ,  and z. 

xi 
A 
w 

@' 

Indicates X. for i = 1, Y for i = 2,  and Z fo r  i = 3. 

Unit vector along the rotation vector of the ear th  i. e. along the 
north polar axis of the ear th  

Latitude angle of the vehicle, i.e. s in  Cp' = R w 
A h  
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DEFINITION OF SYMBOLS (CONT'D) 

Definition 

Oblateness coefficients of the accepted ear th  model 

Gaussian gravitational constant 

Equatorial radius of the earth 

Potential function 

The DEL operator; for  example -VU = R g  = - - 

Denote a column vector and row vecfor, respectively, i. e. 

i = i ,  2,  3. au 
axi ' 

e. - 

Vector cross-product of E o n t o  7, i. e. angular momentum vector. 

Vector scalar-product of B and v, i. e. % = R V cos (a,v). 
Angle of attack measured from the velocity vector to the projection 
of the thrust  direction in the flight plane, positive in the direction of 
motion (positive nose-down) . 
Out of plane angle of attack, measured from the projection of the 
thrust  vector in the flight plane to the thrust  vector, positive toward 
the angular momentum vector. 

Time rate  of change of an and aW. 

Vector in the direction of the perifocus and of magnitude equal to t k  
eccentricity of the instantaneous conic section. 

Eccentricity of a conic section. 

An orthogonal right-hand system of unit vectors,  S being parallel to 
the incoming asymptote of an  hyperbola, T being in the plane normal 
to the 8 in some coyenient  direction ( fo r  example in the moon's ' 

travel pianek, an$ R being defined by the following vector c ros s  pro- 

A 

A 

duct: R = S X T .  
v i  



SOME EFFICIENT COMPUTATION TECHNIQUES INCLUDING THEIR APPLICATION 
TO TIME OPTIMAL TRAJECTORIES FROM PARKING ORBIT 

SUMMARY 

The amount of time and effort expended in generating time optimal trajectories is 
presently large and increasing daily. 
for  computing such trajectories. 

This emphasizes the need for efficient techniques 

Presented in this report  is the development of some efficient techniques for gen- 
erating time optimal trajectories from parking orbit to desired terminal conditions. Each 
technique is illustrated with a specific detailed application to the lunar-interplanetary 
trajectory problem (assuming one powered phase from parking orbit  to injection into the 
transit  conic) . 

The techniques developed are in the following general a r eas  of interest: formulation 
of the differential equations for the control variables; parametric representation of the 
control variables, transformations relating the various parameters,  and the efficient use 
of these parameters;  transversality conditions, with emphasis on their  application to the 
lunar-interplanetary cutoff surface constraints; transformation of mission objectives into 
target arr ival  conditions that are efficient for use in multivariable isolation schemes. 

Fundamental, motivating discussions are included to aid in adapting the techniques 
o r  principles to the solution of other problems. 

SECTION I. INTRODUCTION 

Presented in this report  are some efficient techniques for  computing time optimal 
trajectories from parking orbit to a target. 
hypersurface defined by functional terminal contraints. 
treated where the desired terminal constraints are defined by mission objectives. 

The target is treated first as a surface o r  
Later ,  the targeting problem is 

It is not the object of this report  to present a theoretical calculus of variations 
treatment of the problem at hand. 
a treatment and to develop in detail some efficient techniques for applying the theory in 
trajectory computation and analysis. 
develop efficient techniques. 

Rather, the objective is to interpret  the results of such 

This report  uses the theoretical results as basis to 



References I, 2,  6 ,  and 7 present the generalized theoretical treatment of vari- 
ational problems and Reference 3 presents the development f o r  the particular problem to 
be considered in this report. 

It is hoped that the ideas used to develop the techniques presented here will be 
adapted to other problems to save manhours and computer time. But, aside from any 
other application that might be made, the application that is given in detail here - that 
of generating time optimal trajectories f rom a parking orbit to various defined targets - 
has already rendered large savings at MSFC. 

SECTION 11. FUNDAMENTAL INTERPRETATION OF THE PROBLEM 

The basic problem to be treated in this report  is the t ransfer  of a vehicle from a 
given point in three dimensional Euclidean space to some variable terminal point in that 
space. Thus, the initial 
point is specified by s ix  quantities defining position and velocity. The terminal point is 
variable, but defined functionally in t e rms  of vehicle position and velocity components. 
The terminal functions must have certain characterist ics for the theory to be applicable 
[Ref. 13, but those.treated in this report  have the proper character.  

The points in space a r e  defined by so-called state variables. 

Fo r  this report  the vehicle is assumed to have constant thrust ,  and constant m2ss 
flow rate. 
contain the spherical t e rm and the second, third and fourth harmonics. 

All  atmospheric forces are neglected. The ear th 's  potential is assumed to 

A calculus of variations treatment of the subject problem (outlined previously) 
results in six so-called control variables. 
tions, it can be shown that there a r e  really only five independent control variables. Fo r  
this problem the control variables can be physically interpreted as the thrust  vector di- 
rection, and the rate of change of the thrust vector direction. The calculus of variations 
treatment of the problem results in differential equations that uniquely define the accelera- 
tion of the thrust vector direction in te rms  of the initial conditions of the problem. 

Fromthe homogeneity of the differential equa- 

For  this report  the problem is resolved to the determination of initial conditions 
for  the control variables such that the time required to transfer the vehicle from.the 
specified set  of initial state variables to some desired set of terminal state variables is 
a minimum. This may sound rather  simple but it presently requires a large amount of 
computer time. 

SECTION 111. EFFICIENT FORMULATION OF THE DIFFERENTIAL EQUATIONS .. 

The efficiency gained by the formulation of the differential equations as presented 
here comes about in three ways: 

2 



.. 
I. The control variable differential equations, i. e. A,  are separated into a .. - .. - 

"dominant" part ,  A,,, and a "minor" par t ,  AM. 

used because the customary t e rms  such as first-order,  perturbing, o r  second-order may 
not be strictly applicable. 

The t e rms  lrdominant'l and "minor" are 

Normally the separation is made such that the spherical earth par t  is separated 
from the part due to oblateness t e rms ,  but it is shown that since the gravitation accelera- 

tion contains the oblateness t e rms ,  much more of the oblateness contribution to h can be 
gotten at essentially no cost. 

.. 

A 
2. One of the reference vectors,  w (rotational vector of the earth), is invariant 

with respect to time. 

3.  The formulation is applicable o r  usable in any spacefixed coordinate system. 
This is perhaps more properly termed flexibility than efficiency. 

To obtain full benefit of the formulation, the acceleration of the vehicle due to gravity, 

A o r  E 
.. - 

must be properly formulated, as is shown in the following development. g g' 

A. ACCELERATION DUE TO GRAVITY 

The potential function associated with the accepted earth model contains the 
It can be found in various texts in various forms. second, third, and fourth harmonies. 

The form used here is 

F A3 
i - 3 sin2 +*)  + -:- ( 3  - 5 sin2 +') sin 

5 R3 
1 

I D A4 
35 R 

+ -7 ( 3  - 30 sin2 + @  + 35 sin4 @ * )  

Defining U = - - GM [I +a], then R 

GM a (ag ei where ei indicates 
.. x =-vu=[, ,  (i+a)+-- 

gi R axi 

a unit vector in the positive Xi direction. 

3 



n c s in  @'. The t e r m s  to be differentiated are of two basic forms, namely - and 
R" 

Applying the chain rule (:ii - ;i - - - - 

a Xi 

one finds that 

n K Xi  _ -  
R '  axi R Rn 

A h  
and, since s in  @' = R w , 

Using these partials,  then, and rearranging t e r m s ,  one can write 

(15 s in2@' - 3) - (t) sin @ #  - 

o r  f 

+ 3 D  IAl4 Y 

c 4 



Defining the following t e rms ,  

SH = ( 3  - 7 sin2 + @ )  

I 
sD = 7 - 2 sin2 +@ + 3 sin4 +@ 

1 2 
C w = (A) R [2 J s i n  + @  + 3 H (t) SmH + 4 D  (t) sin @* Sw,, 

it follows that 

B. THE CONTROL VARIABLE DIFFERENTIAL EQUATIONS 

A s  was mentioned previously, a calculus of variations treatment of the 
problem of interest  resul ts  in a system of differential equations to be satisfied by the 
control variables. These can be expressed as follows (Ref. 16) : .. - .. - .. - - 

aR aR aR 
2 
82 

-+ A3 
.. *-I - 

h = (h * V  ) Rg = hi *+ 1 2  ay 

.. xi .. .. 
NOW, R g1 e = - -  \y [(1 + CR) + Cu , where f o r  i = I, Rgi = Xg, etc. 

5 
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Taking the partials as indicated in each t e r m ,  one finds that 

axi R 

n xi 
axi 

a sin @ ”  Xi 
R )  = ( w i  - sin @ *  axi 

6 



-2.2 Xi - - -  
R )  - 2 sin2 @ *  + 3 sin4 = - ( s i n  @ *  ai - sin2 @ *  

a i  - asD 
axi axi (7 F. 

3.4 Xi 
R )  + - (sin3 + *  wi - sin4 @ *  R 

axi R 

14 
+ ($ [- R 
+ 3 D ($) R 

12 
R 

(2 sin @ *  +-- sin3 @ *  

12 
R R 

+ H ($ (- sin @ *  
R 

C w = (‘)’ R k J s i n @ * + 3 H  (t) S a i + 4 D  (i)2 s i n @ * S W n ]  

-=[e (t) 3 
( 2  J s in  9’) + - Ai (t) ( 3  ‘AH) 

8% 
axi 

a ( s i n  @ * )  

axi 
( 4 D ~ i n @ ~ S , ~ ) l +  (t)2 E J  - axi 

aScJH 8 s in  $Y 
+ 4 D  ($)’ ( axi axi 

+ (k) 



a ( s i n  +*)  i Xi 
R )  = - ( wi - sin G 0  axi R 

i 2 xi -- - R) ( s in2  + #  - -)  = E ( s in  + 0  wi - sin2 
a - a SUH 

axi axi 5 

8 % ~  a i 2 Xi 
(s in2 G~ - .- ) = E ( s in  wi - sin2 4. - axi axi 5 R 

- 

+ ($)2 [y + y 6 H  (i) A sin @ *  + 4 D  ($) 

+ - 2 s in3  +j] xi 
R R 

6,i xx 
- - - >- - tii - g  2)  where 6,i= I, 0 ,  0 as i = i ,  2 ,  3 & ($)- R R3 R 

.. 
There are only two more partials to be established to complete the h expression; 

they are as follows: 

a 



.. - 
aR 

NOW one may write A explicitly as follows: axi 

A 
- 3 D (k)’ (-$ sin Cp- + - 12 R sin3 Cp* )] wi R + (t) [g s in  + a  

.. 
From the above explicit form,  one can generalize to h without writing all the other de- 
tails. Introducing some new notation, one may write the following: 

J s in  Cp’ - H [$) (SH - 14 sin2 Cp’) - 12 D Rw = u 

9 



(t) sD - aRw sin $0  1 + %$ (e) {{ (A f;) [ Z  J SJ + 3 H (i) sH sin $8 + 12 

7 

2 
S + 16D (k) s i n @ ' S  - CJ sin (t) wH wD ww 

\ 

+ ( A '  A w) UWW) 13 } 
J 

At this point one can see that by computing the dot product 

and using the coefficients 

(I + CR) and C, 

.. - .. - 
from the Rg expression, the dominant par t  of the A expression can be evaluated as 

cheaply as the spherical part. 
should be given as 

.. - 
In Reference 3, the A expression for  a spherical earth 

.. - - A h  
A = '$ [ 3 ( A *  R) R - h ] .  
S 

Defining the expression derived here  to consist of a "dominant" and "minor" par t  indicated 

.. - .. .. by 
- -  
A = AD + A M  , it is seen that 

. y  GM - A h A 
7 p l = ~ { ( A - R )  [ 3 ( i + C R ) R + 2 C  W w ] -  ( i + C R ) h }  



and 

s - cr s i n + j  D Rw 

+ (h w) A URw} a 

- 
+ (A 

9 H  ($) S + 

A 

w, "wu 

16 D ($)2 SuD s in  +* - u ww sin $41 

where 

CT Rw = 10 J s i n  +*  - H ($) (SH - 14 sin2 + * )  - 1 2 D  (t) ( 3  sin2 $ 4  - i) sin + *  

SECTION IV. EFFICIENT USE OF PARAMETERS REPRESENTING THE 
CONTROL VARIABLES 

Assume that the basic system of equations (the mathematical representation of the 
problem) is already developed in a space-fixed Cartesian coordinate system. 
here is to determine efficient techniques fo r  using this development ra ther  than to in- 
vestigate whether it should have been in space-fixed spherical coordinates, rotating 
Cartesian coordinates, etc. Many computer programs are already in use based on the 
space-fixed Cartesian coordinate development. 

The objective 

The control variables can be represented by various sets of parameters ,  depending 
upon the reference coordinate system, the choice of variables,  etc. It goes without saying 
that each set  of parameters  has certain advantages o r  disadvantages fo r  performing various 
tasks,  o r  fo r  solving various problems. 

.. - -  
Since the differential equations are developed in t e r m s  of A ,  A ,  and A ,  there is a 

- - 
tendency to specify initial conditions in t e rms  of the '?LAMBDAS, 
transformations developed here  allow the user  to consider three sets of parameters  
rather than just the 'I LAMBDAS. 'I An analysis is included to point out advantages and 
disadvantages associated with the various sets of parameters ,  and an  efficient procedure 
is given fo r  their  use in solving the two-point boundary value problem. 

i. e. A@ and A,. The 

I 
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A. DISCUSSION AND ILLUSTRATION OF PARAMETERS REPRESENTING THE 
CONTROL VARIABLES 

Recall now that the control variables have the following physical interpretation 
[Ref. 41 : 

- A .  A 
A = A h : A vector of magnitude A along the thrust  direction, h . 
h = A A + A h : Time rate of change of A .  

- - * A  

A 
Notice in Figure I that the thrust direction, A ,  only gives two independent control 

parameters.  
might be that h offers  three independent parameters ,  but an  examination of the differential 
equations (Ref. 3) reveals that A has no influence on the trajectory. 

These are depicted in the figure by the angles xp and x Y' A first impression - 

Figure i also illustrates two ways in which one may specify initial conditions for  
- 

the control variables. One way is to  specify ho and A,. Another is to specify xp, xy, 
ip, iy, A ,  and A. 

FIGURE i. CONTROL VARIABLES RELATIVE TO A CARTESIAN SYSTEM 

12 



To clarify what is meant here ,  consider the transformation from the control param- 

e te rs  (Xp, xy3 XP' Xy, * A ,  A) to the control parameters 

seen that the unit thrust vector is expressed in te rms  of 

(h,  h) . 
and xy as 

From Figure I it is 

P 

Differentiating with respect to t ime, it follows that 

sin x sin xp iy - cos x cos x 

xy cos x >i - cos x sin x 
P P  

Y Y 

P Y  Y 
A 

cos xy fy  

To complete the transformation, note the relationship 

- A * A  
h = A  A , and differentiate to get x = A A + A A .  It is seen then that the ?'CHIS, 

( x p ,  xy, i p ,  gy, A ,  A ) ,  represent a set  of control parameters ,  just as do the ''LAMBDAS,'I . - -  
( A ,  A) * 

Now, getting back to a primary question: "What are the advantages o r  disadvan- 
tages of specifying initial values in one se t  of parameters ra ther  than the other?" 

One important point may be stated as follows: Wpecification of parameters ref- 
erenced to an  arbi t rary coordinate system is likely to result in unnecessary difficulties. 

Both the "CHIfT and 17LAMBDA" parameters are associated with an arbi t rary coor- 
dinate system. 
trated in Figure 2. 

The unnecessary difficulties associated with their  specification is illus- 

Figure 2 illustrates a current problem of interest, that of leaving a circular  park- 
ing orbit of radius RC and burning into an elliptic orbit. Assume now that the distance 
from the origin to Mi is equal to the distance from origin to M2, and that the flight time 
from injection to Mi is equal to that from injection to M2. 
cation of the lunar injection problem where MI represents the moon on one day, and M2 
represents the moon on some other day. 

This is essentially a simplifi- 

13 



FIGURE 2. CONTROL VARIABLE VECTORS FOR A PHYSICAL PF.OBLEM 

The point to  be made is that really the physical problem has not changed in the two 
Fig- situations, but the control parameters  shown in the figure are completely different. 

ure 3 illustrates the difference, which in this simple illustration can be remedied rather 
easily. Unfortunately, in most problems such difficulties waste many hours of computer 
time. 

Y Y 
I 

FIGURE 3. COMPONENTS OF THE VARIED CONTROL VECTOR 

14 



Now consider a set of parameters  that eliminate these unnecessary difficulties. 
They have a three dimensional physical basis  Call this set the !*ALPHAff parameters.  

rather than an arbi t rary coordinate system basis. 

FIGURE 4. CONTROL VARIABLES RELATIVE TO A FUNDAMENTAL SYSTEM 

Figure 4 i l lustrates the inplane significance of the "ALPHA" parameters for  the 
same problem as disc.ussed previously. 
as the "a( '  for going to M, (under the previous problem definition). 
parameters are problem oriented. 
meters remain unchanged regardless of Coordinate system definition, o r  any other changes 
that do not change the fundamental problem. 

Notice that the lladl for going to Mi is the same 
Thus, the "ALPHA" 

Having solved the physical problem once, the para- 

The transformations relating the "CHI1' , ITLAMBDA", and "ALPHA" parameters  
are developed in detail in the next par t  of this report. 
in three dimensions using vector notation as defined previously. 

The transformations a r e  developed 

Some experimentation has  been done to determine how one may use the various 
sets of parameters to his advantage. The resul ts  can be summarized as follows: 

1. The l7ALPHA" parameters  ( an , aw *, bn , &-, A ,  A )  are more efficient than 
either t6e rrCHIS7T o r  "LAMBDAS" for specifying initial conditions, as w a s  pointed out in 
the preceding figures and associated discussions. When one specifies "LAMBDAS" he is 
in effect specifying direction cosines and their  rate of change with respect to an arbi t rar i ly  
oriented coordinate system. This is a difficult and unnecessary task. 

15 



2. 7tLAMBDAtt parameters  are more efficient than "ALPHAS" o r  "CHISt for use 
in multivariable isolation schemes. 
clination as a desired end-condition and an inplane alpha as a control parameter. 
influence coefficient (partial  derivative) of orbital inclination with respect to an  inplane 

This is easy to visualize by thinking of orbital in- 
The 

= 0 . This type of thing leads to difficulties in the use of multi- alpha is zero, i.e. - 
a an 

variable isolation schemes. The use of "LAMBDAS" avoids such difficulties. 

a 1  

In summary, ttALPHAS7r are used to specify initial values fo r  the control variables. 
These initial "ALPHAS" are then transformed to "LAMBDAS" for  use in the multivariable 
isolation schenie to achieve desired end conditions. 
the ttLAMBDAtt to "ALPHA" transformation, yeilds the llALPHAStt associated with any 
se t  of ttLAMBDASrt. These transformations allow the user  to utilize the "ALPHASft and 
ffLAMBDAStt to his advantage rather  than being forced to use one o r  the other in an un- 
economical fashion. 

The inverse transformation, i. e. 

B. TRANSFORMATIONS RELATING THE PARAMETER SETS, THE "CHIS", 
"ALFHAST1, AND "LAMBDAS" 

These transformations a r e  valid with respect to any space-fixed Cartesian 
coordinate system. The "CHIS" ca r ry  the relationship depicted in Figure I with respect 
to the coordinate axes. must 
also be taken relative to the same coordinate system. 

Obviously, the quantities defining position, velocity, etc. 

. .  
1. Transforming "LAMBDAS", (x, h) , to ttCHIS't, ( Xy, xp, xy, xp, A ,  and A) 

- 
h ; vector defining the direction of the thrust. 

h ; vector defining the time derivative of the thrust  direction. 
- 

A 2 =  * ; square of the magnitude of h, i.e. A =  IX I 

From Figure 1, one can show that 

sin X = A j  Y 

Y 

(equations for evaluating the angles X and X p ) .  
Y' 1 

cos x = ( A <  + hi2) z 

16 



sin x = -A;/cos xv 

cos xp = h.ycos xy 

P .I 

Differentiating with respect to time yields 

(A; - A sin xY) I - - 
'y A cos Xy 

(Equations for  computing the time rate of change of the angles 5 and X 

% is computed.) 

once the vector P' 

- - i To compute h from the known A and A vectors,  recall that 

Differentiation gives 

- A -  
A =  A A + A A .  

. - -  
Since A A = A a A ,  the expression 

1 :  * A  

A ? = - ( A  - A A) can be evaluated. 

-cos  x sin xP Y 

; unit vector in the direction of the thrust vector. 

A 
A = A h ; vector of magnitude A in the thrust direction 
- 



sin xY s in  xP iy - cos xY cos xp xP 

P Y  P P  

cos xy xy 

sin xy cos x 2 - cos  xy sin x x 

3. Transforming I'A 
- - _  

, A), to "LA BDAS , 
- -  

( A ,  A) 

R ,  V ,  a represent vehicle position, velocity, and acceleration relative to the 
- - 

same coordinate system in which A and h are desired. 

a. Computation of some basic quantities 

. -  

C,  = d R 2  V2 - ( R  fi) ; angular momentum magnitude 

- w = E x V ; angular momentum vector 

R = E/R ; unit position vector 

v = 7/17 ; unit velocity vector 

A 
W = G/Ci  ; unit vector in the angular momentum direction; unit normal to the 

flight plane. 

A 

A 

A A h  
N = W x V ; auxiliary unit vector to complete the orthogonal right-hand coordi- 

A A A  
nate system V N W .  

b. Quantities depending on the llALPHASfl 

pv = cos an  cos aw 

A A A A  
pn = sin an cos 01 ; direction cosines of the A on the axes V ,  N ,  W. 

W 



p, = sin a, 

0 -  Pv - - (Pn &n + P, cos an  &) 

bn = p, ci;l - p, sin an 

b, = cos CY, % 
h A h A 
A = pv V + pn N + p, W 

- A 
A = A A ; this computation is not necessary since the trajectory is unchanged 

; unit vector in the thrust direction. 

A 
whether A o r  h is used. 

.. - F A  - 
a = - A + R : ; acceleration vector where R represents the acceleration due 

g ' to gravity. M 

I 6 - - [R2 ( V  c) - R (E g)] ; time rate of change of C, 
I- c,  

* i  ' A  A A  A 0 = - (2 - V V) ; t ime rate  of change of the vectors V ,  W,  and N. 
V 

fi 1. * A  w =  - r ( R x a )  - c, w l  
Ci  

A h A A A A A 
A = bv v + P v  v + b n  N f pn N + /jw w + ~ ,  w 
* - 
A = A A + A A ; time rate of change of the thrust  vector direction 

- -  
4. Transforming "LAMBDAS," ( A ,  A) , to "ALPHAS," (an,  aye, 4, 4, A ,  A) 

Some te rms  defined in the previous transformation are used here without 
redefining them o r  rewriting the equations. 
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these equations yield the two parameters  A and A associated with 

the current h and h . - -  
A i  = h ' h  

A 
h = A/A ; unit thrust  vector 

A A  
direction cosines of the unit thrust vector relative to the V, N,  
and $? axes. 

= A '  N 

A h  
p w = h '  w 
Pn 

7 s i n a w  = p, 

these equations yield the parameters  an and aw. 
cos aw = "'; + P i  

J sin an = pn/cos a i  

cos an = pv/cos aw 
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C. APPLICATION OF THE RECOMMENDED PARAMETERS TO GENERATE 'TIME 
OPTIMAL LUNAR TRAJECTORIES 

An IBM 7094 program is in operation using these parameters as recommended 
to generate time optimal lunar trajectories. To illustrate the advantages gained, consider 
the program option where injection C, (twice the total energy per  unit mass) is the only 
terminal constraint on the trajectory burn phase from ear th  parking orbit to lunar transit  
injection; this option uses booster liftoff t ime, ear th  parking orbit coast t ime, and the 
burn time (equivalent to C, at injection, C,i) as parameters  to isolate three desired lunar 
arr ival  conditions. 

The recommended procedure is that the initial values for  the control parameters  
be given in t e rms  of the "ALPHAS," i.e. (an, ow, &n,  c % ~ ,  A ,  A ) .  
formatiqn is available fo r  specifying initial conditions for  the "ALPHAS. 
initial values 

Now assume no in- 
By using the 

A = O  

the program , using the associated "LAMBDAS, 
and the five associated transversality conditions. 
flight phases are required to obtain this optimum set of control parameters. Having found 
the required "LAMBDASff to achieve the desired C,i and transversality conditions, the 
associated fTALPHAS'f a r e  car r ied  from one trajectory to the other as launch t ime, coast 
t ime, and burn time are varied to a r r ive  at desired periselenum conditions. This means 
that once the optimum set of initial 'fALPHAS'T a r e  determined for  the set of desired term- 
inal conditions of the burn phase they are essentially invariant as launch t ime, coast time, 
and burn time a r e  varied to achieve desired periselenum conditions. 
variations in burn time were required, the initial "ALPHAS" would have to be determined 
again to stay within some preset  tolerance of the exact optimum values. 

will isolate any realistic required C,i, 
Usually eight to twenty-five powered 

Probably, if large 

The procedures discussed here are valid regardless of the orientation of the 
Cartesian coordinate system being used, o r  the position of the moon in its orbit. 
hold fo r  the variations normally made in launch t ime,  coast  t ime, and burn t ime to a r r ive  
at desired periselenum conditions, with only one search to determine optimum initial 
values fo r  the "ALPHAS. If  This is possible by specifying initial values for  the shaping 
parameters  in te rms  of the "ALPHASTy and utilizing the transformations that relate the 
VIA LPHAS" and LAMBDAS. 

They 
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D. CONCLUSIONS AS TO PARAMETERS REPRESENTING THE CONTROL 
VARIA BLE S 

There is a best  set of parameters  fo r  analyzing a given problem. To some 
extent it is uneconomical to analyze in t e rms  of any parameters  other than that best set. 
Determining the best set may be practically impossible, but efforts to that end are nor- 
mally worthwhile. 

For the problem treated in this report ,  experience has shown the t lALPHA1l param- 
e te rs  to be better fo r  specifying initial conditions for  the control variables. 
tlLAMBDA1l parameters  are better for  performing multivariable isolations to determine 
initial values for  the control variables that produce the trajectory to desired terminal 
conditions. 
advantage of these properties. 
to generate time optimal lunar trajectories. 

The 

Hence, the transformatiofis relating these parameters  allow the user  to take 
This was pointed out in the application of the techniques 

A survey of the various physical problems can be conducted using a simplified 
model to determine approximate initial values fo r  the "ALPHAS. I' When the survey is 
completed, the resulting data can be represented functionally by using curve-fitting tech- 
niques. 
should relieve the user  of the task of trying to guess what initial values of the control 
parameters  are required for  various vehicles to leave various parking orbits and burn 
into various terminal conic sections. 

These functions can therefore be built into appropriate computer programs. This 

SECTION V. TERMINAL CONSTRAINTS AND TRANSVERSALITY CONDITIONS 

The following development is applicable to problems having fixed initial state 
conditions but functionally variable terminal state conditions. The object is to t ransfer  
the vehicle from the initial state conditions to the desired terminal state conditions in a 
minimum time. 
t rol  variables such that the terminal constraints are sat isf ied in the time optimal fashion. 

This is accomplished by finally determing initial conditions for the con- 

It is possible to grasp and use the methods for  solving this problem without going 
through the theoretical development of the methods [References 1, 2 ,  6 ,  and 7, present 
the theoretical development]. The objective here  is to present the methods in an under- 
standable form,  to develop a generalized set  of transversali ty cofiditions for  a particularly 
useful class of constraints, and to present in detail one application for  the generalized 
transversality conditions. The constraints necessary to generate t ime optimzl lunar o r  
interplanetary trajectories from a parking orbit (assuming one burn phase from orbit to 
injection) are of the acceptable class, hence, these are used in the detail.ed application 
just mentioned. 
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A. FUNDAMENTAL DISCUSSION OF TRANSVERSALITY CONDITIONS 

References I, 2, 6 ,  and 7 all give rules in one form o r  another such that for  
the problem at hand one can show that 

5 J a F  J 
A . = -  P. 4 and .hi = pj a x  

J a?, j=i i 
1 

j = i  

are relationships thzt must be satisfied at the terminal state surface (hypersurface) along 
the time optimal trajectory. The t e rms  in these expressions are defined as follows: 

F. ( j  = I, . . . , J) : Desired terminal state conditions represented in functional form. 

Thus, the number of constraints, J, represents the dimension of the terminal curve,  sur- 
face, o r  hypersurface. The number of terminal constraints can be any number from one 
to six for the problem a t  hand (since there are six independent control parameters) .  

J 

Xi, Xi ( i =  I, 2, 3) : The six state variables for  this problem. 

Ai, hi ( i =  1, 2 ,  3) : The s ix  control variables for  this problem (these can be reduced 

to five independent parameters  but a cutoff parameter is added to give six independent 
control parameters).  

P. ( j  = I, . . . , J) : Undetermined auxiliary constants that are eliminated in solving 
J 

f o r  the transversality conditions. 

The number of terminal constraints, J,  and the number of control parameters  
determine the number of transversality conditions to be derived from these auxiliary re- 
lationships, hi and hi. 
criteria to be used as control parameters ,  hence, there can be no more than six inde- 
pendent relationships enforced at the terminal ( cutoff) surface. 

This problem has five independent control parameters  and a cutoff 

To visualize what the transversality conditions accomplish, consider the problem 
where only one terminal constraint is to be satisfied. 
problem) are independent of the control varizbles, there is (theoretically) a six param- 
eter family of solutions. It is an enormous task to locate the time optimal solution from 
this family by surveying trajectories. 
boundary conditions that make this task reasonable, although it still requires a lot of 
computer time. 
ditions are derived. 
are satisfied simultaneously a t  cutoff, all the parameters  of the problem will have been 
utilized, and one is assured that the corresponding trajectory is the desired t ime optimal 
one. 
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Since the constraints ( for  this 

But the transversality conditions furnish auxiliary 

Thus, for  one terminal constraint, five associated transversality con- 
When the constraint and the five associated transversality conditions 



To illustrate how transversality conditions can be derived, consider J = i. Thus, 
F, is the only terminal constraint, and it follows that 

a Fl a F, 
a: a x  A, = P, - and A, = - P, - 

a Fi A, = - Pi - a i  
a F, 

A3 = P, - a z  

Any one of the six relationships can be solved fo r  Pi to eliminate that auxiliary quantity, 
and the results substituted into the other five expressions to yield the five desired trans- 
versality conditions. For  example, 

so  that the five transversality conditions can be written as 

24 



At this point, then, the problem is reduced to that of isolating a cutoff t ime, and initial 
values for  the five independent control parameters such that the constraint ( Fl) and the 
five associated transversali ty conditions ( GI,. . . G5) are satisfied at cutoff. 

A s  more constraints are added, the algebra becomes more burdensome, but the 
procedure is basically unchanged. Thus, for  two constraints, F, and Fz, two of the s ix  
relationships will be used to eliminate Pl.and Pz, resulting in the four required trans- 
versali ty conditions. A s  more constraints are added, the basic procedures remain the 
same. 

One should note that constraints can be imposed such that there is no way possible 
for the system to generate a solution trajectory. 

B. GENERALIZED TRANSVERSALITIES FOR A PARTICULAR CLASS OF 
CONSTRAINTS 

The relationships 

J J aFi 
j axi  a F i  and ii = P 

j= i  
h . = - C  1 pj 3 

j = i  

represent,  in a sense,  the most general expression for  transversali ty conditions asso- 
ciated with the problem.at hand. 
to a r r ive  at an expression for  a se t  of transversality conditions which circumvents most 
of the work described above for  a particularly useful, frequently occurring, c lass  of con- 
straints. 

The object now is to specialize this expression somewhat 

This particul.ar c lass  of constraints is characterized as follows: 

i) J = 3 ,  i. e. there a r e  three functional terminal constraints, F l y  F,, and F,. This 
results in three auxiliary constants Pi, P,, and P 3 .  

ii) The partials of the constraints with respect to the state variables,  Xi and Xi 
(i=i, 2,  3) , must be representable in vector form. 
following notation is used: 

In the subsequent development the 
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and 

a F 1  - aF-2 - aF3  - 

a xi a xi a xi 
- b y  - -  - c .  - a ,  - -  - -  

Using some new notation the hi and hi relationships can be rewritten using vector 
and matrix notation as 

a i  

3 
a x  3. 

denote the inverse of the mat r ix  (e) , it follows that 

(assuming the determinant of (e) does not vanish) 
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and 

- -1 1- 

- A = ( % )  (&) - 

Substituting the notations fo r  the partials into this expression and denoting the matrices 
in a different fashion yields 

-1 - - -  
Working through the details to determine ( a ,  by  c) 
of cofactors can be written as three vector crossproducts put into row form,  namely 

explicitly reveals that the matr ix  

- - -  (!: :: i!) , and that the determinant of (a ,  b y  c) is given by the sca la r  quantity 

It follows that 

Expanding the right side and rearranging te rms  leads to the following very convenient 
form for  expressing the particular desired transversality conditions: 

{h  (bXZ))ac+ {X- ( Z X Z ) ) P + { h .  ( a x b ) ) y  +{E.  ( C X 9 ) ) h  = 0 

This means that this generalized form (applicable to the particular c lass  of con- 
straints) can be programed and when the user  formulates the constraints F,, F2, F,, and 

the partials denoted by a! , p ,  y ,  a ,  b, and E ,  he is ready to generate the associated t ime 
optimal trajectory ( the partials expressions are peculiar to the constraints , so they must 
be programed with each set of acceptable constraints). 

_ _ - - -  

To appreciate how much effort this form f o r  the transversali ty conditions can save 
on the par t  of the engineer, it is sufficient to work through the application (given in the 
next par t  of this report) without using the above form. Al,so, the programming time and 
computing time is less using the generalized form than it is using the form gotten by per- 
forming the indicated operations and reducing to primitive terms.  
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C. FUNDAMENTAL DISCUSSION OF EARTH-TARGET FUNCTIONAL CUTOFF 
SURFACES 

Before getting into the particular application of the generalized set of trans- 
versali ty conditions, a fundamental discussion is presented on earth-to-target functional 
constraints. The groundwork leading up to a formulation of "Lunar o r  Interplanetary 
Cutoff SurfacesTT is presented in Reference 8. The actual formulation of the "Lunar 
Cutoff Surface" is given in Bference  5. 

The essential features of such cutoff surfaces are presented here  without delving 
too deeply into the developmental details. 

For  any earth-target geometry (any instant in time) a three dimensional volume 
of geocentric conics exists for  travel to  that target. The perigee positions of these conics 
lie on a cone, having its vertex at the ear th 's  center,  and each perigee vector of the 
volume of conics being an element of the cone. The geometry and the desired mission 
profile which is characterized by vehicle parameters ,  t ra jectory shaping, and mission 
objectives all  contribute to the determination of this cone of perigee vector locations and 
the sizing cr i ter ia  for  the associated conics. The axis of the cone is essentially opposite 
the vector from ear th  to target,  and is denoted by the unit vector M. The radius of the 
cone, o r  half-cone angle, u, and the conic sizing c r i te r ia ,  C3 (twice the total energy pe r  
unit mass)  , are essentially dependent on the parking orbit ,  the earth-target distance, 
and the desired flight time to the target. Having made these decisions, in other words 
having specified these parameters ,  the elements defining the cone can be treated as con- 

stants. Thus, the desired M,  0, and C3 can be treated as known quantities, denoted by 
A 
M'%, 8, and C;. 

A 

A 

Now it doesn't really mat ter  that trajectories computed on a reaiistic trajectory 
model result  in perigee vectors that aren' t  on a cone for  the full three dimensional volume. 
Feasibility dictates that a relatively small  par t  of the cone is considered for  each launch 
opportunity. Reference 5 shows the applicability of the lunar cutoff surface as described 
for realistic flight simulations. 

D. APPLICATION OF THE PARTICULAR GENERALIZED TRANSVERSALITY 
CONDITIONS TO THE LUNAR-INTERPLANETARY CUTOFF SURFACE 

For  a fixed profile there a r e  three constraints to be satisfied at cutoff if a 
lunar o r  interplanetary mission is to be fulfilled. These constraints a r e  as follows: 

- C: = 0 : The injection conic sizing cri teria.  2 GM 
Fi = V2 - - R I. 

A *  - 
2. F2 = M S - e cos 8 = 0 : Alignment cr i ter ia  for  placing the major axis 

of the conic as desired. 
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- -  A *  
3. F, = M - ( R  x V) = 0 : Flight plane alignment cri teria.  This forces the 

A 
flight plane at cutoff to contain the vector Me. 

One should note here  that no constraint is present to choose which perigee vector 
will result, but the constraints do force the perigee vector to be one of those making up 
the cone. Furthermore,  there  is no cr i ter ia  forcing the vehicle to inject at a particular 
t rue anomaly, o r  angular momentum. This is, in fact ,  the task that the transversality 
conditions perform , namely, insuring that the vehicle travels the best possible ( t ime 
optimal) trajectory from the given initial state variables to a set of terminal state vari- 
ables lying on the €unctional terminal cutoff surface. 

Having formulated the constraints Fly F2, and F,, the next task is the formulation 
of the partials 

a F  a F  
alld 2 , as ( j =  1, 2 ,  3) and ( i =  1, 2 ,  3) .  a X i  a xi 

In the constraints listed, 
conic , and e the eccentricity of 

- 
S denotes a vector in the perigee direction of the cutoff 
that conic. Minovitch shows in Reference 9 that 

- i -  A 
S = ~ V x ( R X ~ ) -  R GM 

I 
- 1  

Rewriting this gives S = - GM 

From various places [Ref. 151 one can find that 

i 
e = ( i - where p is the semilatus rectum, and trarr is the semi-major axis. a 

This can be rewritten as 
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[C3 (R2 V2 - R2 k2) ] 

Now the partials expressions can be developed as follows 

I 
2-2- F, = k2 + i2 + i2  - 2 GM (x2  + y2 + z ) 

Xi - -  - -  a F, - 2 G M - 3  , R - 2xi a Fi 
a ki a xi 

The intermediate partials expressions can be developed as follows: 

[ ( x k  + y j r  + Zk) xi J 
1 GM 

-- as, - - { ~ X X ~ - ~ X ~ - R R ~ ~ ~ }  1 w h e r e d l i = 1 ,  0 ,  0 , a s  i = l ,  2 ,  3.  
a k i  GM 

{ 2 y xi - j~ Xi - R fi 62i} where 62i = 0 ,  I ,  0 ,  as i = I, 2 ,  3.  
as2 1 

ak i  GM 
- 
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as3 I GM - a x i  - - - GM { - R3 z xi - i ki + (.'-?) 63i}  

= ${ & [ki ( R 2  V2 - R2 fi2 + R2 (23)- C3RRXi  I 1  
a e  I -- - -2 
ajri 

~ G M  [ ( R 2  V2 - R ' i 2  + R2 C3) xi - C3 R R Xi] 

- =  a e  &{& [- a c3 
a xi a xi 

- a e  a xi = e 2  I { [T ( R 2  V2 - R2 i2) + C3 V 
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Substituting these into the appropriate place yields 

+M: ( Z Z ~ ~ - ~ X ~ - . R A ~ ~ ~ ) ]  - ' O s  [ (R2V2-R2f i2+R2C3)  xi - C3 R h X i ]  e GM 

A &  - 
- = ( M ' x  R ) i  
a F3 

a k  i 

A -  - -  a F 3  - (V  x M'") 
a xi 

Now all the par t ia ls  expressions are - established and by eliminating the V subscript  in 
favor  of vector  notation ( thus,  Xi = R as i = 1, 2, 3) and rearranging t e r m s ,  these 
par t ia ls  can be written in the required vector form. It follows then that 
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A A - -  A - -  
2 (M* €2) V - (Me: V) R - R k M* 

- a F 2  - P = - - -  aici GM 

a F 3  - A 

a xi 
- c = - -  - ( V  x M96) 

All the information is now available to evaluate the transversality conditions that 
were developed previously. These were given in the form 

{k- (CXZ)} E + { ;  ( c x q ) p + ( ;  ( z x b ) } y + { b *  ( c x a ) } A =  0 

The operations indicated here have been performed and reduced to the most primi- 
tive t e rms ,  but it really doesn’t seem useful to include them since it is more economical 
to program and compute the above form khan the primitive form. Furthermore,  the work 
involved in getting to the .primitive form is a burdensome exercise. 

These results are now in use at MSFC. A program generates the surface c r i te r ia ,  
i. e. it determines fkk , cos CT” , and C; from trajectories that satisfy mission objectives 
at the target. 
versality equations to generate optimum trajectories from perturbed initial conditions o r  
vehicle characteristics. 

It then uses these quantities in the cutoff surface constraints and trans- 
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SECTION VI. EFFICIENT TARGETING TECHNIQUES FOR COMPUTING 
TRAJECTORIES THAT SATISFY MISSION OBJECTIVES 

This report, up to this point, has dealt with techniques for terminal constraints in 
well defined, explicit form. In this part  the primary objective is to present efficient 
techniques for treating terminal constraints that are no more explicit than a mission ob- 
jective. 
constraints for a trajectory from geocentric parking orbit that passes over a specified 
lunar location. 

Fo r  example, it is shown how to efficiently represent the periselenum arrival 

The techniques used are made possible by transforming mission objective state- 
ments into efficient isolation parameters [Ref. I O ]  , and allowing these desired I'efficient 
parameters" to become slowly varying o r  floating end conditions. 
velopment this is referred to as a 'Ifloating end-point" concept. 
employed to generate trajectories from which functional cutoff cri teria,  such as the cut- 
off surface quantities fix' , cos c4' , and C: (that were used previously in this report), are 
derived. 

In the following de- 
These techniques are 

A. FUNDAMENTAL DISCUSSION OF THE TRAJECTORY TARGETING OR 
ISOLATION PROBLEM 

The current procedure for isolating o r  targeting trajectories that satisfy de- 
sired terminal conditions is called a multivariable isolation technique or  routine. 
illustrate what the routine is capable of performing and the basic assumptions involved 
in its development, the presentation usually proceeds as follows: 

To 

Let 
- 
Q represent the set of Qk control parameters 

f represent a set  of fk end conditions. 

The trajectory isolation problem , then, is the determination of a that yields the 

- 

desired values for A Taylor se r ies  for some f i  element of T is of the form 
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- 
Now using m a t r i x  and vector notations, this may be rewritten for all elements of f as 

where 

i =  I, ..., k 

j = I, ... , k 
9 (aij) 0 = ............ 

Qk 
............ 

etc. A t  this point a critical assumption is,made: “The series may be truncated after the 
first partials terms. Hence, 

results. This is the basic equation associated with the so-called multivariable isolation 
schenrle. Definigg the following te rms ,  let Qo represent the se t  of “best-guess” values 

for  the control parameters, f (Qo) =To the associated end conditions, f* the desired 

end conditions, and a* the control parameters that result in F* , then 

_ -  

results. Let (sk - Go) , the change needed to go from the Go to G”, be AG, .then 

- -  
results. 
( aij) is determined numerically by generating trajectories having discrete, independent 

( f  * - fo) is known after the best-guess trajectory is computed. The matrix 
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variations made i n  the elements of Go. In other words,  

- 
f I Qi0, * 9 (Qjo + 6Qoj) 9 * - - 9 QkoI 

is established by computing a trajectory.  This yields 

One sees, then, t h a t  as j 
numerically approximated , 

goes from j = I, . . . , k,  the complete (a..) 
and the equation 1J 0 

matr ix  can be 

can be evaluated to yield AG. NOW, basically, the trouble with this procedure lies in the 
truncation of the series past  the l inear  te rms .  This means that (I) The "best-guessYf 
must  be very  close to the des i red@ such that the higher o r d e r  t e r m s  (truncated t e rms)  
are insignificant, o r  ( 2 )  The parameters  being used must  in reali ty be near  l inear  such 
that the higher o rde r  t e rms .a re  insignificant. Generally speaking neither ( I )  nor (2)  is 
t rue ,  and a great  amount of work and computer t ime is wasted until finally (I) is fulfilled 
and a solution is found f o r  a* to give T * .  

B. PARAMETERS WITH LINEAR FEATURES 

A 
T and 

I 

In Reference 10,  M r .  W. Kizner of JPL  presents  two parameters ,  B 
- A  .s R ,  that are very  efficient for  isolating desired a r r iva l  conditions on lunar o r  inter- 
planetary t ra jector ies  in t e r m s  of various departure parameters .  References 1 0  and 12  
discuss these parameters  in some detail; it is to be pointed out he re  that these parameters  
are more  l inear  relative to variations in departure conditions than any others that the 
author knows about. As was pointed out previously, this l inearity feature is of tremendous 
importance in performing the t ra jectory isolation problem economically. 

A A 
The advantages gained by the use of these parameters  (E - T and E - R) in solving 

the trajectory isolation problem are the basis  f o r  the transformations to follow. H e r e  
some frequent mission constraints are t ransformed into 5 - T and 5 
one can talk about missions in the accepted language, and even feed these into the com- 
puter program , but have these transformed into % T and 5 R to keep the advantages 
that these param eter s afford. 

A A 
R. By doing this ,  

h A 
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C. CONCEPT OF FLOATING END-CONDITIONS 

A A 
In o rde r  to  i l lustrate a basic difficulty involved in the use of % - T and % * R ,  

and how the difficulty can be eliminated, a typical example is t reated in detail. Suppose 
one wishes to survey various types of t ra jector ies  constrained as follows: All must a r r ive  
at a "specified periselenum radius" - Rg' 
1"' ST a 

that 

a t  a "specified inclination to the ST plane" - CA ' 
and have a Ifspecified flight t ime from. injection to periselenu"'  - T g  . It is known 

A - 
B - R = -b s in  IST. 

A A 
T and % - R exactly one must  know 14, absolute This implies then that to specify 

value of the semi-major axis  of the a r r iva l  conic, exactly. 
slowly for  small  variations i initial conditions but it var ies  more  than enough to cause 
trouble. In practice,  to get 1 R CA - R'kAl < -1 .0 (km) one must  get on and off the com- 

puter two o r  three t imes ,  each t ime specifying the By' T and 5"' R more  accurately as 
the estimate gets better f o r  lagel. Getting around this difficulty gave rise to the concept 
of "floating end-point isolation. This concept is useful in isolating other difficult combi- 
nations of end-conditions in t e r m s  of % - T and z-  R. 

Since one cannot specify 

It is t rue  that 1.1 va r ies  

- A A 

A A 

A A - T and % - R that resul t  in the desired R" and 1" 

to  the desired accuracy,  consider the possibility of having the program compute these 
quantities after it generates the best-guess t ra jectory and establishes the best-guess 1.1 . 
In other words, the program has a much bet ter  estimate of the la1 needed than the u s e r  
can get without considerable previous work having been done on s imi la r  trajectories.  

CA ST 

Using 1.1 f rom the initial t ra jectory,  the specified R* 
pute 

and IIT, the program can com- CA ' 

Any t ime thereaf ter ,  as the isolation proceeds,  when the program gets a new "better- 

guess" t ra jectory,  it recomputes 
h A - T and BJ6 - R. Now, what does this mean in the 
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fundamental operation of establishing 

1 -  - 
.@ = (aij) ( f "  - fo) ? 

This actually allows F* to  become a slowly varying function, ra ther  than fixing it as best 
one could, which was not good enough. Letting F* represent the exact, fixed value that 
is unknown but desired; then ?* = F* + 6f, where 6f changes in value, and 

- 
- 

results. 
i. e . ,  (F* - fo) could be greater  than [F* + (6f - fo)]  and the difference be harder  to 

eliminate (possibly). The idea is that since the program must find AG anyway, then 
most likely it is as easy to find the exact desired AQ (F* + 
AQ ( f  " -fo) . And, since one must go on the computer again and again to refine AQ (f  " -fo) 
to finally approach AQ (F* - fo) , the floating end-condition isolation looks very favorable. 

This could actually converge more rapidly than the fixed end-condition isolation, - _ _  

- -  
- 6) as it would be to find 

- -  - - -  - 
- -  - 

Here is what is involved in solving the problem using fixed end-condition isolations. 
Notice that Ia*I is required to specify i?" 
does not know lay with sufficient accuracy before running very s imilar  trajectories. So, 
one makes the best guess that he can for  la*I (cal l  it ai) , computes ( B 

(5 R) 
that RCA will differ.from 

One must go on the machine at least  once more with a new estimate of la*! 

h A 
T and B* - R, and (generally speaking) one 

- A 
T) and 

A 
and goes on the computer. When the isolation is completed, experience shows 

by 10, 20, o r  perhaps 100 (km) due to the guess for  1a':'I . 
to refine the 

results so that RCA - takes on a sufficiently small  value to suit one's purposes. I 
How does the floating end-condition isolation help in this problem? The idea is to 

let  the program use the 1.1 that it gets on the "best-guess" trajectory rather than trying 
to input one. Then as the isolation progresses and "better" trajectories are generated, 

A A 
discard the old 1.1 and update (5 T) and (B R) using la1 from these f 'bettsrff  tra- 

within whatever tolerance the user  has  specified - no more refinements a r e  needed. The 
user  has not been bothered trying to estimate what ia*I should have been as when using 
f k e d  end-condition isolations. 

jectories. Thus, when the floating end-condition is finally isolated, l~~~ - R ~ ~ I  is 

In actual practice,  experience has shown that the floating end-condition for  lunar 
flight studies takes no more  trajectories pe r  case to isolate than a fixed end-condition 
isolation. It has made the work much easier, faster, and saved a considerable amount of 
manhours and computer time for  the type problem just discussed. 
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D. TRANSFORMING CONSTRAINTS INTO THE LINEAR PARAMETERS 

Using the parameters  B 
tions, various constraints are transformed into a n  efficient system fo r  computations. 
These transformations are presented in detail. 

- A A 
T and - R ,  and the concept of floating end-condi- 

I. 

This particular set of constraints was discussed in the previous example. As 
is shown in References 10 and il, 

Thus the constraints are represented in the most  nearly l inear parameters  that are 
available, except f o r  flight t ime,  TF. 

tions in initial conditions. 
parameter ,  but no implementation has been done here  in this area. 

Flight t ime is still a nonlinear function of varia- 

JPL has done some research  [ 121 on a linearized flight t ime 

2. Arrival  on Orbits Inclined at a Minimum to Some Reference Plane 

The latitude o r  declination of S relative to some plane is the value of the 
A 

minimum orbital inclination that can be established relative to that s ame  plane. 
the lunar equator as the basic reference plane' to which minimum orbital inclination is 
desired. The principles c a r r y  over identically to any other reference plane. 
tions are defined [Ref. 131 and are available f o r  establishing S in selenographic coordi- 
nates. Define T in the lunar equator,  normal to  S, as T .= (Sy, -Sx, 0). 

means that a r r iva l  in the selenographic referenced S T plane is, in fact ,  a r r iva l  in the 
orbit  plane inclined at a minimum to the lunar-equator. 

Consider 

Transforma- 
A 

- - A 
This  then 

A h  

Thus, 

A A  
RGA, IgT = 0" ( a r r i v e s  in the S T plane, Ifdirect" motion along orbit) 

S pe c if y : 
/\A 

I* = 180 " ( a r r i v e s  in the ST plane, f f rec t rogradef f  motion along orbit) 
LREAs ST 
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E. CIRCUMLUNAR FREE RETURN PROFILES 

This implies that the outbound t ransi t  is designed such that the vehicle can 
travel from injection, pas s  nea r  the moon on the side away from the eai-th, and continue 
to satisfactory ea r th  reentry with no postinjection thrust  applications. Other reasonable 
constraints are often superimposed upon this basic profile. 

The sensitivity of ear th  reentry conditions to launch o r  injection conditions is well 
known f o r  circumlunar t ra jector ies .  The concept he re  is to isolate conditions at peri-  
selenum that are known t o  be nea r  free re turn  conditions. The procedures f o r  refining 
these to result in acceptable reentry conditions is not given s ince these refinements 
represent  very  small  changes in the departure parameters .  

Now, how are free re turn  periselenum conditions formulated? Miele [Ref. 141 
shows that ( i n  the rest r ic ted three-body problem) any t ra jectory arr iving with peri-  
selenum on the earth-moon line is symmetr ic  with respect  to the earth-moon line. Also, 
any trajectory having periselenum in the xz plane of the classical  res t r ic ted three-body 
problem (plane containing the ear th ,  moon, and the pole of their  motion about the bary- 
center ,  at any time) with a 90" o r  270" azimuth is symmetr ic  with respect  to the xz 
plane. In other words,  if periselenum is on the earth-moon line,  the velocity may have 
any local azimuth direction and s t i l l  retain the outbound-to-inbound symmetry about the 
earth-moon line. 
s tays  in the xz plane of the rest r ic ted three-body problem (analogous to moving in latitude 
referenced to the t ravel  plane of the moon) , then the velocity must  have a local azimuth 
direction (relat ive to the pole of the moon's motion about the earth) of 90" o r  270" to 
keep the outbound-to-inbound symmetry with respect  to the xz plane. Better c r i te r ia  
exists f o r  approximating free re turn  a r r iva l  periselenum conditions but this will suffice 
to i l lustrate how the transformation can be used. 

However, if periselenum moves away from the earth-moon line but 

Notice that free returns  having periselenum on the earth-moon line represent  a 
subset of the more  general  problem in which the periselenum location is specified arbi-  
trari ly.  The other type of free return is likewise a subset of the more  general problem 
in which periselenum location and the azimuth direction are specified arbi t rar i ly .  
formations are developed f o r  the more  general  problems of which the free returns  are 
particular situations. 

Trans- 

F.  TRANSFORMING CONSTRAINTS THAT HAVE CIRCUMLUNAR FREE 
RETURNS AS PARTICULAR SITUATIONS 

In all of these transformations assume that the vehicle must  be constrained to 
In the notation circumnavigate the moon and pass  a t  a specified close approach distance. 

to be used here ,  this means that R must be forced to a specified desired value, R'" 
CA CA' 
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I. Arrival at a Desired Periselenum Position (R* @* , CAY 

Free  returns  having periselenum on the earth-moon line are a particular 
family out of this c lass  of trajectories.  

The J P L  space program [Ref. 151 has the direction of the moon from the earth 
A 

available in various coordinate systems; call this direction E ( @ E ,  A*) . 
to be imposed then are denoted by 

The conditions 

A 
Using a common coordinate system throughout, and treating S as a slowly varying function, 
the unit normal to ‘the desired flight plane is given by 

- h A  A 
N = S x E , where S denotes the direction of the incoming asymptote, 

and 
A 1 
N* = $(N2 + N 2  + N 2 ) T  

X Y Z  

The desired direction of the impact parameter [Ref. 101 is given by 

A 
and finally E* = b* B* from which two desired parameters a r e  computed, 

A A - 
(B* T) and (g* - R ) .  

A 
These parameters orient the flight plane as desired but PXc is not yet forced to the de- 
s i red location in that plane. This is accomplished by enforcing 

A h  A A  I - ( P * .  P)=O o r  I - ( P . E ) = O .  

A - 
From the fundamental principles [Ref. 111 it is known that these constraints, (E” - T) , 
(B* * R) , and ( I  - ( P  E )  = 0) , c8n be satisfied with variations in 

A A I \  
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T L  (booster lift-off t ime) 

ATc (coast  time in ear th  parking orbit) 

AT ( t ime of lunar transit  injection burn from the ear th  parking orbit) . 
B 

2. Arrival at a Desired Periselenum Position (R* 
Velocity Direction (C") 

4" , A*) with a Desired CA ' 

For free returns  of this type the periselenum must occur in the xz plane of the 
restricted three-body problem with a velocity heading normal to that plane. 

The coordinate system fo r  this transformation is selenocentric and can be oriented 
arbi t rar i ly  so long as periselenum position and velocity, and the earth 's  position and 
velocity relative to the moon are known in the same system. A s p m e  that periselenum 
position, p ,  and velocity, 5 ,  moon's position, Em , and velocity,R, , are known in the 
same geocentric space-fixed coordinate system , then 

- - 
Rs = p - Rm 'gives selenocentric periselenum position, 

and 
- . -  
v s = p -  Rm gives selenocentric periselenum velocity. 

- - 
The normal to the plane of the moon's motion about the earth is given by % 
Normalize E 

= R x R,. m 
A h  

m 
x R, , and R, , E, , m y  m 

- A A A A A 
and Nm , establishing R, and Nm ; then Em = N 

h A h  
and Nm is an orthogonal, right-handed system of unit vectors. 

analogous to the xz plane of the restricted three-body problem. 

The R, N, plane is 

A A A  
The J P L  program has an option allowing S, T ,  R ,  and to be referenced to the 

A A  A 
Rm , E, , and Nm system. This option should be used for  the type problem being con- 

sidered. 

For  this problem transform the desired conditions into the desired relative to 
A A A  

the R m ,  E,, N, system. Define 
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h A 

- 
= R s * E m  'm 

chus , Zm and 7 
relative to  the system of unit vectors R,, E,, N, at periselenum arr ival  time. Letting 

denote the vehicle's selenocentric position and velocity, respectively, 
A A A  

m 

then 

- sin 6 cos a* cos 

- sin 6 sin CY* cos DC + cos CY 

'6 - sin CY)& sin C* 

sin Z* 

sin 6 cos 6 cos  C* 

represent periselenum position and velocity in te rms  of the desired quantities a*' and Z" , 
CY* and C* being specified. Some f ree  returns ,  as was pointed out, a r e  just a subclass 
of this general formulation where CY* = 0, and C* = 270". Notice now that %is still a free 
parameter. The objective is to choose 6 such that the flight plane contains S,. 

A h  A 
& 

The first task is to determine 6 such that the flight plane, p, p,, contains S,. 
This means that 6 must be chosen such that 

A h  A A  
and Nm Sm = 0. 

m 

43 



These operations yield 

- 
- sin a96 cos Z* + sin 6 cos s in  ZYC 

A 
N m =[ cos a* cos EXC + sin 6 sin a* sin E’% 

- cos 6 sin Z* 
- 

and 

A h  
Nm Sm = 0 = sin 6 ,Z‘* ( Sx cos a* + S s in  a*)  - cos 6 8, sin Z” Y 

+ cos Z” ( S  cos a96 - S, sin a*) .  Y 

Letting 

P = S cos a96 + S s i n a *  and M = S cos a* - S, sin a*< 
X Y Y 

A h  
and solving the Nm Sm = 0 equation fo r  s in  6 one gets 

This shows that C * of 0” and T give trouble; so, fo r  present purposes these a r e  arbi- 

t rar i ly  ruled out. By definition, - - 5 6 5 - so that 7r 7r 

2 2 

I cos 6xc = (I - s i n  2 *  6 )H 

Finally, using the desired declination, 6*, one can compute 

A Ad. A 
B” = N’ xSm m m 
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A 
The vector E* orients the flight plane as desired relative to the moon’s travel plane. m 
Now the periselenum position vector, pm, must be moved to the desired position, pm. 
This implies that 

A A* 

A 
R* = 1 

A 
p ) = 01 , can be satisfied with m 

(booster lift-off time) , ATc (coast  time in the geocentric parking orbit) , 
The conditions (B* - $!) , (E*‘ - a) , and [ 1 - (% 
variations in T 

and ATB’(burn time of the lunar transit  injection stage) , but variations in T 

time from lunar transit  injection to periselenum) must be acceptable. 

Ii 

(flight F 

COS +: sin 

3. Arrival at a Desired Periselenum Position and Passing Over Another 
Specific Site 

A s  was t rue in the previous developments for f ree  return profiles, the trans- 
formation developed here treats a general problem of which the f ree  return profile is a 
particular case.  

In this problem two positions are specified on the arr ival  orbit ,  thus, uniquely 
specifying the desired orbit projection on the lunar surface. 
move the S,  incoming asymptote, such that it is brought into the desired orbit plane. 
This cannot be done, in general, with small variations in initial conditions. 

The problem now is to 
A 

Let 

denote the desired periselenum direction , and 
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denote the other desired position on the orbi t ,  then 

h A - 
N = R: x P*  

A A *  A is completely specified. If S is to be made to lie in the P R’” plane, the relationship 
1 

A h  N” S = 0 

A 
must  be satisfied. Fur thermore ,  if S keeps the unit magnitude then 

s .  = I  

must  hold. 

A 
Now: what reasonable procedures move S such that these two relationships are 

satisfied? 

It is known from experience [Ref. I l l  that T variations represent  one means of 
A A’# A F A  A .  

i 
bringing S into S , i. e. , causing S to move into the P” R” plane, there  being denoted as cy&. This procedure may o r  may not be expensive. Fo r  example if a relatively short  
flight t ime is required,  then the injection energy requirements go up accordingly. 

A A, .L 

Using T 
S =S* Then 

variations to bring about S = S*’* implies that Sz M S; , hence assume F 
z z‘ 

can be used to determine S* and S* . This  resul ts  in 
X Y 
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and 
i 

A A A  
Choosing the Rm,  E m ,  Nm reference system , analogous to the x,  y ,  z axes (respectively) , 
circumlunar flights result  always in Sx > Q 

pletely general. It is evident that ( N E  + N*2 = 0) cannot be permitted. This means 

that the two specified points on the desired orbit must not both be in the travel plane of 
the moon. 

These equations, as usual, a r e  not com- 

Y 

A n 
To complete the development, $* and pi’” follow from S*, 

A h A _j A 
B* = N*. x S*, b” = I\IRgA ( 2  la1 + R E A ) ,  and z4‘ = b*< BY6 , 

A A 
from which (z* * T) and (p * R) can be computed. 

A A 
Another means for forcing S into S* is by making powered plane changes. Need- 

less to say, such maneuvers can be prohibitively expensive. 

this procedure is to take the projection of S in the P” R” plane as the direction of S . 
This means that 

One‘ easy way to formulate 
A* A A h  

1 

A A A  A 
%* = S - ( S  N*) N* 

and 

h A A 
The unit vectors T and R follow from S*, and 

A A 
from which (z* T) and (2* R) follow immediately. 
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The remaining condition 

A A *  1 - ( P  - P ) = 0 

A 
forces the periselenum vector to the desired position, P*. 

SECTION VII. CONCLUSIONS AND RECOMMENDATIONS 

The development presented in this report  is in four general areas, as is pointed 
out in the abstract. Conclusions and recommendations relative to each general. area are 
listed as follows: 

I. Differential Equations of the Control Variables 

If ear th  oblateness t e rms  are included in the acceleration of the vehicle due 
to gravity, then the pr imary influence of the oblateness t e rms  on the control variables 
should be included. 
dominant par t  of the oblateness influence rather  than just the spherical earth influence 
( s e e  pages 16 and 17). 

Essentially no extra computing t ime is required due to including the 

2. Parametric Representation of the Control Variables 

Detailed transformations are given relating three parameter sets  for  repre- 
senting the control variables. These parameter sets are referred to as the lfALPHAS,ll 

(an, aW, G n ,  dLIw,  A ,  A ) ,  the TICHIS,l' ( x p ,  x , 
(x, h)  . These are simply three distinct se t s  of quantities defining the thrust vector,  and 
its time rate  of change. 
to  take advantage of the facility either set might afford for  performing a particular task. 

, 2 , A ,  A ) ,  and the LAMBDAS," . Y P Y  

The transformations relating these parameters allow the user  

It is shown that llcontrol variable initial conditions" should be given in t e rms  of 
the !'ALPHAS. However, the isolation of "control variable initial conditions" that result  
in trajectories to desired terminal conditions (using a multivariable isolation scheme) 
should be done in t e rms  of the "LAMBDAS. 'I By utilizing the transformations relating the 
"ALPHAS'I and "LAMBDAS'? one can specify the initial conditions efficiently as "ALPHAS, 'I 

transform to "LAMBDAS," and perform the isolation efficiently in te rms  of the'UMBDAS. IT 

It is recommended that a survey be conducted using a simplified physical model 
to determine initial lfALPHASrl required for  various vehicles to leave various parking 
orbits and burn into various desired-terminal conic sections. The resulting data should 
be represented functionally using curve-fitting techniques. These functions can then be 
used in more refined programs, thereby relieving the engineer of the task of estimating 
"control variable initial conditions, I' eliminating some duplication of effort since many 
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engineers do this task independently at many different places, and saving a sizable amount 
Qf computer time that is usmlly wasted due to poor estimates of the %ontrol variable 
initial conditions. I t  

3. Transversality Conditions and Lunar-Interplanetary Mission Cutoff Surfaces 

The fundamental nature of transversality conditions and cutoff surfaces is 
discussed, and a detailed application of these concepts to lunar-interplanetary flights is 
given. 

T i e  lunar-interplanetary cutoff surface constraints belong to a class of terminal 
constraints characterized as follows : 

i) There are three functional terminal constraints; call them F,, Fz, and F3. 

ii) The partials of these constraints with respect to the state variables Xi and 
Xi ( i  = i ,  2 ,  3) can be represented in vector form. 
notation is introduced such that a s  ( i = I, 2,  3) , 

For the present development the 

8 F  a F~ - a F, --1=z - -  
a 8, ' a x i  a ki - P ,  - -  - Y  

a F I  - a~~ - a F 3  - 
- b y  _ _ -  - c .  - -  - a ,  - -  a xi 8 xi a X i  . 

It is shown that for this class of terminal constraints, the transversality condition 
may be written as 

{ T .  (bxC)} '+{ i .  ( c . a , } ~ + ( i .  ( axb) )y+{b .  ( c x a ) } h =  0 ,  

- 
where A,  and h represent the control variables for this problem. 
to compute the transversality conditions in this form than it is to reduce this expression 
to so-called primitive terms. 

It is more economical 

4. Isolating o r  Targeting Trajectories that Satisfy Mission Objectives 

Parameters that are used to define mission objectives are not normally ef- 
ficient for use in isolation or  targeting routines. Hence, procedures are given for 
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transforming mission parameters  into efficient isolation parameters.  All the parameters  
treated in this report  involve what is called a "floating end-point concept. I f  This simply 
means that the desired terminal values of the efficient isolation parameters have some 
variation as initial conditions are varied,  but experience has shown that this variation 
presents no problem. On the other hand, introduction of this "floating end-condition 
conceptff results in significant savings in man-hours and computer time when isolating 
ear th  departure conditions that result  in trajectories that fulfill lunar o r  interplanetary 
mission objectives. 
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